

DATA SHEET

Product Name Axial Leaded Type Cement Fixed Resistors

Part Name PRWC Series File No. DIP-SP-026

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound&Power -film type can be supplied on a case to case basis
- 1.7 Compliant with RoHS directive.
- 1.8 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PRWC = PRWC type
- 2.2 5th~6th digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

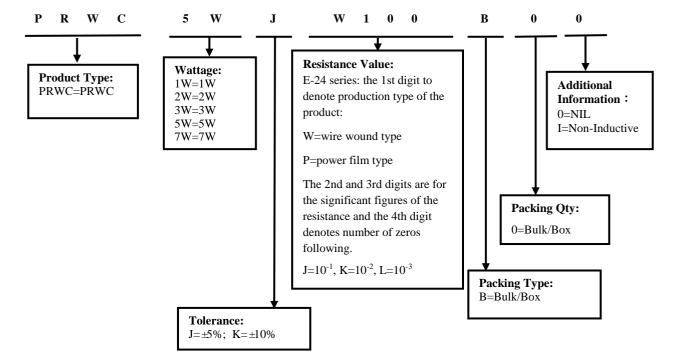
Example: 5W=5W

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

 $J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8^{th} digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9^{th} & 10^{th} digits are to denote the significant figures of the resistance and the 11^{th} digit is the number of zeros following

Example: W12J=1.2 Ω W120=12 Ω P273=27K Ω

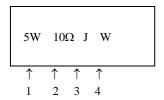

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product; I=Non-Inductive

3. Ordering Procedure

(Example: PRWC 5W \pm 5% 10 Ω B/B)



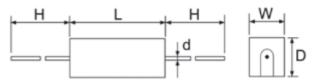
4. Marking

Example:

Code description and regulation:

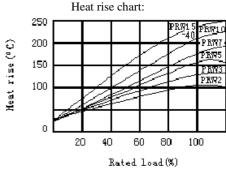
- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: ±5%

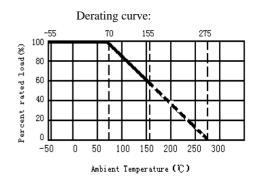
K: ± 10%


4. Pattern:

M: Power filmW: Wire wound

Color of marking: Black Ink


Note: The marking code shall be prevailed in kind!


5. Ratings & Dimension

Туре	Dimension(mm)				Resistance Range		
	W±1	D±1	L±1	Н	d±0.05	Wire Wound	Power Film
PRWC 1W	6	6	12	25±3	0.70	1Ω~27Ω	28Ω~33ΚΩ
PRWC 2W	6	6	18	28±5	0.70	1Ω~27Ω	28Ω~33ΚΩ
PRWC 3W	6	6	20	28±5	0.70	1Ω~27Ω	28Ω~120ΚΩ
PRWC 5W	6	6	25	35±5	0.75	1Ω~200Ω	201Ω~150ΚΩ
PRWC 7W	9	9	25	35±5	0.75	1Ω~200Ω	201Ω~150ΚΩ

6. Derating Curve

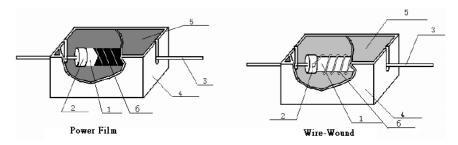
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)


R= nominal resistance (OHM)

7. <u>Structure</u>

No.	Name	Material Generic Name		
1	Body	$\mathrm{Al_2O_3}$		
2	Сар	Tin plated iron		
3	Lead	Copper Wire		
4	Ceramic Case	Al ₂ O ₃ CaO		
5	Filling Materials	${ m SiO}_2$		
6		Power Film: Metal Mixed film		
	Resistance element	Wire-Wound: Alloy Wire		

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥ 20Ω: ±350PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{$		
Short-time overload	Resistance change rate must be in $\pm (5\%+0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.		
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.		

Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω) ,and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260 °C \pm 5 °C solder for 10 \pm 1 seconds.		
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ±3 °C Dwell time in solder: 2~3 seconds.		
Humidity (Steady state)	Resistance change rate must be in $\pm (5\% \pm 0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40\pm2^{\circ}\text{C}$ and $90\sim95\%\text{RH}$ relative humidity		
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5hours "ON", 0.5hours "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at $40\pm2^{\circ}\text{C}$ and $93\%\pm3\%$ RH.		
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 ± 2 °C ambient.		
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.		
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \ \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \ \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.		

9. <u>Note</u>

9.1 UNI-ROYAL recommend the storage condition temperature: $15^{\circ}\text{C} \sim 35^{\circ}\text{C}$, humidity: $25\% \sim 75\%$.

(Put condition for individual product)

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) manybe degraded.

- 9.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 9.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic
 - b. Storage in direct sunshine \ rain and snow or condensation
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂, Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20, 2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	Modify Ordering Procedure	2	Nov.13, 2024	Junying Ye	Haiyan Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice