

DATA SHEET

Product Name Radial Type Cement Fixed Resistors

Part Name PRMT Series File No. DIP-SP-032

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. <u>Scope</u>

This datasheet is the characteristics of Radial Type Cement Fixed Resistors manufactured by UNI-ROYAL..

- 1.1 Compliant with RoHS directive.
- 1.2 Halogen free requirement.

2. Explanation of Part No. System

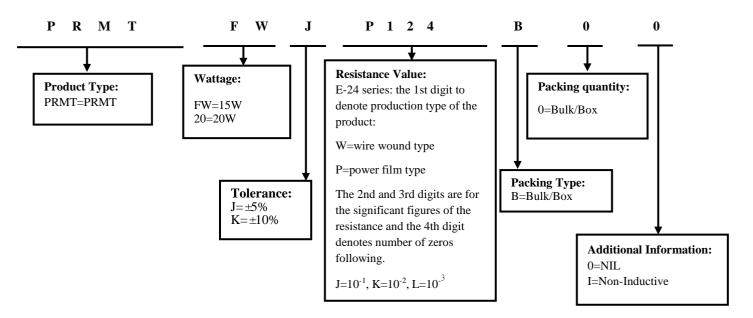
The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0" Example: PRMT=PRMT- type
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W. Example: FW=15W
- 2.2.2 For power rating Between 20 watt to 99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself. Example: 20=20W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.

2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example: $W12J=1.2\Omega$ $W120=12\Omega$ $P273=27K\Omega$

2.5 The 12^{th} , 13^{th} & 14^{th} digits.

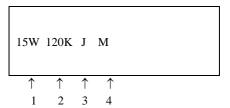

2.5.1 The 12^{th} digit is to denote the Packaging Type with the following codes: B=Bulk/Box

2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product; I=Non-Inductive

3. Ordering Procedure

(Example: PRMT 15W ±5% 120KΩ B/B)



4. Marking

Example:

Code description and regulation:

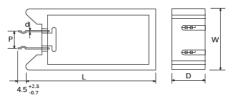
1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J: \pm 5%

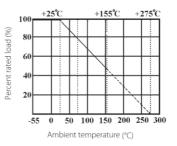
K: ± 10%

4. Pattern:


M: Power film

W: Wire wound

Color of marking: Black Ink


Note: The marking code shall be prevailed in kind!

5. <u>Ratings & Dimension</u>

Туре	Dimension(mm)			Max Max Working Overload	Resistance Range				
	W±l	D±0.5	L±1	P±1	d±0.05	Working Voltage	0	Wire Wound	Power Film
PRMT 15W	20	13	38	7.5	0.5	700V	1400V	0.1Ω-560Ω	561Ω-200ΚΩ
PRMT 20W	20	13	45	7.5	0.5	750V	1500V	0.122-30022	

6. Derating Curve

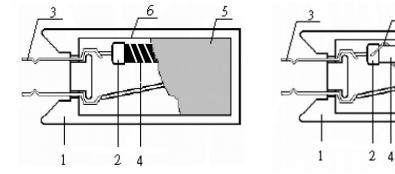
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Structure</u>

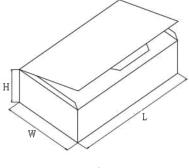
Power	Film
-------	------

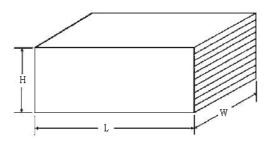
6

Wire	Wound
------	-------

No.	Name	Material Generic Name
1	Body	Al ₂ O ₃
2	Сар	Tin plated iron
3	Terminal type	Tin plated iron
4	Ceramic case	Al ₂ O ₃ CaO
5	Filling materials	SiO ₂
6	Resistance element	Power film: Metal Oxide Film
	Resistance element	Wire-wound: Alloys

8. <u>Performance Specification</u>


Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	≥20Ω: ±350PPM/°C <20Ω: ±400PPM/°C.	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (t_2) t_1: +25 °C or specified room temperature t_2: Test temperature (-55 °C or 125 °C)
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	 4.18 Permanent resistance change when leads immersed to a point 2.0- 2.5mm from the body in 260°C±5°c solder for 10±1 seconds.
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds.
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.



Humidity (Steady state)	Resistance change rate must be $in\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2℃ and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	7.9 Resistance change after 1000 hours (1.5hours "ON" , 0.5hours "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^\circ$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \ \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \ \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Packing</u>

Inner box

carton box

				Unit: mm
Part No.	Qty/Inner Box (PCS)	Inner Box Size L×W×H (±5%)	Qty/Carton Box(PCS)	carton size L×W×H (±5%)
PRMT 15W	100	218×165×55	600	535×235×135
PRMT 20W	100	225×155×65	600	330×245×235

10. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

11. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Add the packing	5	May.05, 2019	Haiyan Chen	Yuhua Xu
4	Modify characteristic	6	Nov.20,2020	Song Nie	Yuhua Xu
5	Modify PRMT 20W d value size	3	Jul.29, 2021	Haiyan Chen	John Zhao
6	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
7	Modify the Structure	4	Mar.19, 2024	Haiyan Chen	Yuhua Xu
8	Modify the derating curve	3	Jul.22, 2024	Haiyan Chen	Yuhua Xu
9	Modify Ordering Procedure	2	Nov.13, 2024	Junying Ye	Haiyan Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice