

DATA SHEET

Product Name Radial Type Cement Fixed Resistors

Part Name PRMB Series File No. DIP-SP-031

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email marketing@uni-royal.cn			
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1. Scope

- This datasheet is the characteristics of Radial Type Cement Fixed Resistors manufactured by UNI-ROYAL.
- 1.1 Compliant with RoHS directive.
- 1.2 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

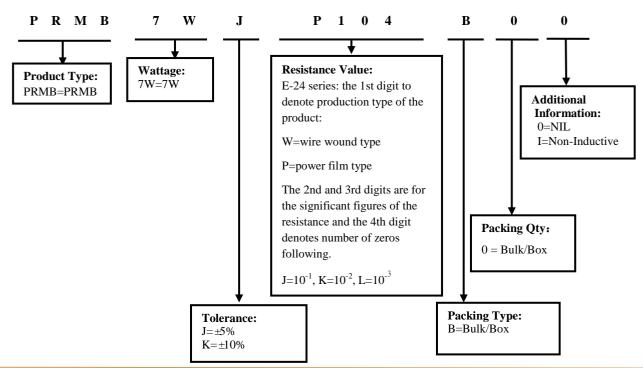
2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example:

PRMB=PRMB type

- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.Example: 7W=7W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ K= $\pm10\%$
- 2.4 The 8th to 11^{th} digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example: $W12J=1.2\Omega$ $W120=12\Omega$ $P273=27K\Omega$

- 2.5 The 12^{th} , 13^{th} & 14^{th} digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

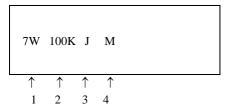

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product

Example: 0= standard product; I=Non-Inductive

3. Ordering Procedure

(Example: PRMB 7W $\pm 5\%$ 100K Ω B/B)



4. Marking

Example:

Code description and regulation:

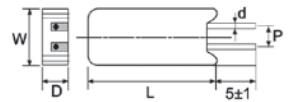
1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J: \pm 5%

K: ± 10%

4. Pattern:


M: Power film

W: Wire wound

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

5. <u>Ratings & Dimension</u>

	Dimension(mm)				Max	Max	Resistance Range		
Туре	W±1 D±1	L+1	P+1	d±0.05	Working	Overload Wire W	Wire Wound	Ind Power Film	
		Dil	L	1 -1	u±0.05	Voltage	Voltage	whe would	Tower Thin
PRMB 7W	12.5	9	38	5	0.75	500V	1000V	0.1Ω-680Ω	681Ω-200ΚΩ

6. Derating Curve

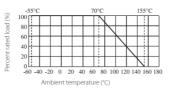
Power rating will change based on continuous load at ambient temperature from -55 to $155\,^\circ$ C.

It is constant between -55 to 70 $^\circ$ C, and derate to zero when temperature rise from 70 to 155 $^\circ$ C.

Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave

root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line

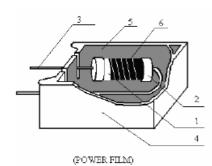

frequency and waveform corresponding to the power rating, as determined from the following formula:

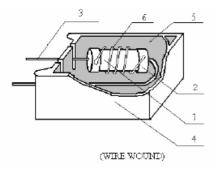
 $RCWV = \sqrt{P \times R}$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω)

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.





Radial Type Cement Fixed Resistors

7. <u>Structure</u>

. .

No.	Name	Material Generic Name		
1	Body	Al ₂ O ₃		
2	Сар	Tin plated iron		
3	Lead	Copper wire		
4	Ceramic case	Al ₂ O ₃ CaO		
5	Filling materials	SiO ₂		
6	Resistance element	Power film: Metal Oxide Film		
0	Resistance element	Wire-wound: Alloys		

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	$\geq 20\Omega: \pm 350 \text{PPM/}^{\circ} \text{C max}$ $< 20\Omega: \pm 400 \text{PPM/}^{\circ} \text{C max}$	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ $R_1: Resistance Value at room temperature (t_1);$ $R_2: Resistance at test temperature (t_2)$ $t_1: +25 \ C \text{ or specified room temperature}$ $t_2: Test temperature (-55 \ C \text{ or } 125 \ C)$		
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V- block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.		
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.		
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds. 		
Terminal strength No evidence of mechanical damage		 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 		
Humidity (Steady state)	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90~95% RH relative humidity		

Radial Type Cement Fixed Resistors

Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5hours "ON", 0.5hours "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at 40 ± 2 °C and $93\%\pm3\%$ RH.
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70\pm2^\circ$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 ℃ under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	Modify Ordering Procedure	2	Nov.13, 2024	Junying Ye	Haiyan Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice